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Abstract

Cosmic Microwave Background (CMB) has been a cornerstone in many cosmology experiments and studies since it was
discovered back in 1964. Traditional computational models like CAMB that are used for generating CMB temperature
anisotropy maps are extremely resource intensive and act as a bottleneck in cosmology experiments that require a large
amount of CMB data for analysis. In this paper, we present a new approach to the generation of CMB temperature maps
using a specific class of neural networks called Generative Adversarial Network (GAN). We train our deep generative
model to learn the complex distribution of CMB maps and efficiently generate new sets of CMB data in the form of 2D
patches of anisotropy maps without losing much accuracy. We limit our experiment to the generation of 56° and 112°
square patches of CMB maps. We have also trained a Multilayer perceptron model for estimation of baryon density
from a CMB map, we will be using this model for the performance evaluation of our generative model using diagnostic
measures like Histogram of pixel intensities, the standard deviation of pixel intensity distribution, Power Spectrum,
Cross power spectrum, Correlation matrix of the power spectrum and Peak count. We show that the GAN model is

able to efficiently generate CMB samples of multiple sizes and is sensitive to the cosmological parameters corresponding
(-)_ to the underlying distribution of the data. The primiary advantage of this method is the exponential reduction in the
_C computational time needed to generate the CMB data, the GAN model is able to generate the samples within seconds
©_as opposed to hours required by the CAMB package with an acceptable value to error and loss of information. We hope
é that future iterations of this methodology will replace traditional statistical methods of CMB data generation and help
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% in large scale cosmological experiments.
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1. Introduction

The variations in temperature of the Cosmic Microwave
Background (CMB) are similar to the ripples on the cosmic
pond and enclose a lot of information about the universe.
’ To collect this information we look at the scales at which
these temperature fluctuations occur. The amount of tem-
perature fluctuations (in micro Kelvin) is plotted against
the multipole moment (1). This is the angular power spec-
trum graph of a CMB temperature map. Such graphs
contain several peaks which provide a lot of information
and we exploit this for our use.

The first peak is an indication of the geometry of the
universe, whether it is flat or curved (Hu, Wayne, et al.,
2004).. CMB radiation is distorted by the curvature of the
universe since the radiation comes from all directions of the
visible universe. The fluctuations will appear undistorted
if the universe is flat. The fluctuations would appear mag-
nified if the universe is positively curved and de-magnified
if it is negatively curved. The second peak reveals informa-
tion about the number of baryons present in the universe.
Due to the initial fluctuations in the universe, all matter
would tend to gravitationally group towards the higher
density fluctuations. However, baryon matter which is in-
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teractive with light would heat up as it clumps up, and the
resultant pressure would try to push against the grouped
matter. This implies that the second peak will be more
damped if there is more matter. Thus, the ratio of the
first and second peak gives us the baryon density(Bucher,
M., 2015).

The anisotropy of the cosmic microwave background
(CMB) consists of the small temperature fluctuations in
the blackbody radiation left over from the Big Bang. The
CMB temperature maps are an incredible source of in-
formation for cosmological analysis and the advent of big
data methods (Alex Krizhevsky, Geoffrey E Hinton, 2012)
have opened a new avenue for the analysis of CMB. Mod-
ern data analysis methods such as machine learning and
deep learning require a large amount of data and tradi-
tional methods such as CAMB and healpy (Gorski, K. M.,
Hivon, E., Banday, A. J., et al. 2005) are computationally
expensive and inefficient for generating a large number of
CMB maps. Here we demonstrate the use of deep genera-
tive models to generate synthetic samples of CMB all-sky
maps which can be used for cosmological analysis. Deep
generative models are capable of learning complex distri-
butions from a given dataset and then generate new, sta-
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tistically consistent data samples (I. J. Goodfellow, 2014).
We generate the dataset for the training of our genera-
tive model by snipping 128x128 and 256x256 resolution
patches from the CMB maps which effectively gave us 56°
and 112° patches respectively. We also train a multilayer
perceptron network (MLP) to predict the baryon density
of a given CMB map, this helps us in comparing the sam-
ples generated by the generative model with the samples
of our dataset by correlating the baryon density predic-
tions given by the MLP model. We use various diagnostic
metrics like the histogram of pixel intensities, the stan-
dard deviation of pixel intensity distribution, Power Spec-
trum, Cross power spectrum, Correlation matrix of the
power spectrum and Peak count to evaluate the perfor-
mance of our generative model. The practical advantage
of this method is that once the model has been trained,
the generation process is extremely fast, thus giving us the
ability to generate a large number of samples that can be
used for scientific study.

2. Methodology

2.1. CAMB and Data Generation

We use standard cosmological software CAMB to gen-
erate CMB temperature maps for training. CAMB is used
to compute CMB, CMB lensing and other related cosmo-
logical functions. CAMB takes several parameters as in-
put to generate a file containing the initial angular power
spectrum data of the universe. The Curved correlation
function is used as the lensing method and we include
reionization. Other physical parameters which are input
to CAMB include Hubble constant, the temperature of
CMB, baryon density, cold dark matter density, the ef-
fective mass density of dark energy, maximum multipoles
data, redshift and helium fraction. This power spectrum
file is in turn used by healpy to generate random gaussian
CMB temperature maps which are used for training the
neural network.

Anisotropy from dipole effect due to the movement of
the earth relative to the CMB rest frame and galactic con-
taminants along the equator corresponding to the galactic
plane is removed while generating the temperature maps.
The generated full-sky maps have the galactic center at
the center of the mollweide projection.

2.2. Implementation and Training

The method proposed in this paper comprises two steps,
Baryon density estimation and CMB data generation using
a traditional Artificial Neural Network and a Deep gener-
ative model. We use a Generative Adversarial Network
trained on CMB patches obtained using CAMB for the
generation of new CMB data and a Multilayer perceptron
network trained on labeled CMB data for baryon density
estimation which will be used for diagnosis and perfor-
mance evaluation of our Generative network. We first train
an image classifier using a multilayer perceptron network
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Figure 1: A random full sky CMB temperature map generated using
healpy and CAMB

Figure 2: Sample patches cropped along the equator of the full sky
CMB temperature map

with the baryon density obtained from the power spectrum
of CMB as the classes/labels of our data. Here we use a
dataset with a large number of classes to approximate our
classifier as a regression model, this helps us in predict-
ing the baryon density of the input test images with a
higher degree of precision. Convolutional neural networks
(CNN) are one of the most famous set of neural network
architectures used for classifying images, CNN takes ad-
vantage of local spatial coherence of the input (Rippel,
Snoek, Adams, 2015) because we assume that the spa-
tially close images used for training are correlated, but in
the case of the CMB dataset , the pixels in the images are
random noise following a gaussian distribution, the CNN
network will not be able to find any common features in
the inputs and thus the training accuracy and test error
will be less than favorable. We have tested Resnet-101 and
Inception v2 CNN architectures. The training accuracy of
resnet network was very low whereas the inception net-
work was suffering from high variance problem (Liu, Wei,
Zhang, Yang, 2017). For this reason, we will be using a
Multi-Layer perceptron network. A multilayer perceptron
is one of the most commonly used architectures of feedfor-
ward artificial neural networks, it consists of three classes
of layers and nodes, the input layer, hidden layers, and
an output layer. Each node in a layer is connected to the
nodes of the next layer via a non-linear activation func-
tion. Multilayer perceptron makes use of one of the most
famous techniques of supervised learning called backprop-
agation (Goodfellow, Bengio, Courville, 2018) for training
the network. A multilayer perceptron can be distinguished
from a linear perceptron from its characteristic use of fully
connected multilayers. This makes multilayer perceptrons
suitable for working with non-linearly separable data (Bul-



linaria, 2015) and can be perceived as a logistic regression
classifier. The weights of the fully connected layers are
updated once a batch of data has been passed through the
network by measuring the error of the output with the ex-
pected result (predetermined labels), this is the essence of
learning in neural networks and is carried out with the help
of an iterative algorithm called backpropagation. This
is an example of supervised learning. Backpropagation
uses an iterative optimization algorithm called gradient
descent (Goodfellow, Bengio, Courville, 2018) to update
the weights of the network. We continue to train the net-
work until the training accuracy and the testing cost gets
saturated. We have used a softmax cross-entropy function
as our loss function. consider a mapping of input x to cat-
egory y, we have

Objective:
min[—E,  p(data)log(P(Y|X)]

where, F is the expectation function
P(data) is the true data distribution
P(y|z) is the distribution of our parametric model.

We now train our generative model to generate the CMB
data. The primary difference between a discriminative al-
gorithm and a generative algorithm is that a discrimina-
tive algorithms map features to labels whereas a generative
algorithm tries to predict the features given a certain la-
bel. Discriminative models learn the boundary between
classes and Generative models model the distribution of
individual classes. In this experiment, we use a Deep Con-
volutional Generative Adversarial Network which has the
ability to mimic complex distributions of data. The pri-
mary goal of the Generative Adversarial Network is to gen-
erate new samples from the same distribution as that of
the training data. The most notable feature of GAN is
that it consists of a pair of networks: a generative network
(G) and a discriminative network (D). The two networks
are in a two-player game setting where the Generator net-
work tries to fool the discriminator by generating images
that match very closely to the training data and the Dis-
criminator network tries to differentiate between real and
generated images thus training jointly in a minimax game.
The Discriminator tries to classify a sample x and outputs
the likelihood in (0,1) of the real image, whereas the Gen-
erator uses a random variable z drawn from a given prior
distribution.

Objective :

minegmar p[Eywp@){log(D(x)} + E.p){log(l — D(G(2))}

where,

E is the expectation function

P(x) is the true data distribution

P(z) is the prior distribution ( usually a Gaussian )

The Discriminator D tries to maximize the objective such
that D(z) is close to 1 (real) and D(G(z)) is close to 0 (fake)

and the Generator G tries to minimize the objective such that
D(G(z)) is close to 1 (discriminator is fooled into thinking gen-
erated G(z) is real). This training process is essentially trying
to reduce the Jensen-Shannon divergence between P(z) and
P(z). We have used the Tensorflow library to implement the
MLP model and the GAN model. We have used Adam op-
timization (Kingma, Ba, 2017) algorithm instead of the tra-
ditional stochastic gradient descent for updating the weights
of the network (Michelucci, Umberto, 2018) and used L2 reg-
ularization, also known as ridge regularization to prevent our
model from overfitting. In L2 regularization, we add a squared
error term as a penalty to the loss function (Goodfellow, Ben-
gio, Courville, 2018). The training of the network is done in
the Google Cloud platform using a Tesla K80 GPU.

2.8. Network Configuration
2.3.1. MLP Network:
Table 1: Network Configuration

No of hidden No of Nodes in each Learning
layers hidden layer Rate
5 3223 0.001
Batch size No of epochs Regularization
parameter
512 50000 0.01

The learning rate determines how fast the weights or the
coefficients of the network are updated. An epoch can be de-
fined as the number of times the algorithm perceives the entire
data-set. Hence, an epoch is completed when all the samples
of the data have been perused. An iteration can be defined as
the number of times a batch of data has been passed through
the algorithm. In the case of a multilayer perceptron, that
means the forward pass and backward pass. Hence, an iter-
ation is completed once a batch of data has passed through
the network. The batch size is the number of training exam-
ples passed through the network at once (Shen, 2017 & Svozil,
Kvasnicka, Pospichal, 1997).

2.3.2. GAN Network:

We use a modified version (Alec Radford, 2015) of the stan-
dard GAN architecture incorporating convolution layer with a
kernel Size of 5x5.

Table 2: Discriminator Network Configuration

Batch
Size

No of
hidden
layers
5 (for
56°
patches)
6 (for
112°
patches)

Operations Outputs

Leaky-Relu-
BatchNorm/ 50
sigmoid

Conv/ linear

Dimension of the gaussian prior distribution ( linear input
of generator) = 200



No of Learning Rate Regularization
epochs parameter
2000 0.000001 0.01

Table 3: Generator Network Configuration

No of Batch
hidden Operations Outputs ave
Size
layers
5 (for
a‘f(?hes) Relu-
p 6 (for linear/DeConv | BatchNorm/ 50
1190 tanh
patches)
No of Learning Rate Regularization
epochs parameter
2000 0.000001 0.01
3. Results

Here we present the results obtained after training the Mul-
tilayer Perceptron and the Generative adversarial network. We
have focused our study on two classes of CMB simulations,
56° patches and 112° patches. We have generated 100 random
samples using the trained GAN model and then passed them
as the input to the trained MLP model to predict the corre-
sponding baryon densities. We have then extracted the patches
from CAMB training dataset whose baryon densities matches
the predictions obtained from the MLP model and used them
for comparison and evaluation in various metrics. The simi-
larities in the power spectrum and other metrics have shown
that out GAN model is capable of reconstructing the complex
distribution underlying the CMB and the subtle but consistent
discrepancies in the results ensure the model isnt just memoriz-
ing the input data but rather recreating the distribution from
the ground up.

8.1. 56° patches

Figure 3: Sample patches (56°s) from the maps generated using
CAMB

Figure 4: Sample patches (56°s) generated by trained GAN model
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Figure 5: Distribution of pixel intensities of (a) a random sample
patch from a map generated using CAMB and (b) a random sample
patch generated using trained GAN model.

Figures 5-11 represent the diagnostic results obtained from
the 56° patches generated by the GAN model.
We have generated 100 random samples using the trained GAN
model and then passed them as the input to the trained MLP
model to predict the corresponding baryon densities. We have



then extracted the patches from CAMB training dataset whose
baryon densities matches the predictions obtained from the
MLP model and used them for comparison and evaluation in
various metrics. The similarities in the power spectrum and
other metrics have shown that out GAN model is capable of
reconstructing the complex distribution underlying the CMB
and the subtle but consistent discrepancies in the results en-
sure the model isnt just memorizing the input data but rather
recreating the distribution from the ground up.
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Figure 6: The plot of the standard deviation of the pixel intensity
distribution of patches generated using GAN and the corresponding
matched CAMB patches
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Figure 7: The power spectrum of the 2D image of a random sample
patch from a map generated by CAMB and of a patch generated by
trained GAN model.
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Figure 8: Cross Power Spectrum obtained using pairs of CAMB
patches, pairs of GAN patches and between a CAMB and a GAN

patch.
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Figure 9: Correlation Matrix of the power spectrum of 100 GAN sam-
ples (right) and the corresponding matched CAMB samples (left).
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Figure 10: Peak Count of patches generated using GAN and the

corresponding matched CAMB patches.
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Figure 11: Total peak count of patches generated using GAN and

the corresponding matched CAMB patches.

8.2. 112° patches

Figure 12: Sample patches (112°s) from the maps generated using

CAMB.

Figure 13: Sample patches (112°s) generated by trained GAN model.
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Figure 14: The power spectrum of the 2D image of a random sample
patch from a map generated by CAMB and of a patch generated by

trained GAN model.
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Figure 15: Cross Power Spectrum obtained using pairs of CAMB
patches, pairs of GAN patches and between a CAMB and a GAN
patch.
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Figure 16: Peak Count of patches generated using GAN and the
corresponding matched CAMB patches.
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Figure 17: Total peak count of patches generated using GAN and
the corresponding matched CAMB patches.

The random samples shown in Fig 13 and the subsequent
results shown in Fig 14-17 follow a similar trend as we have
seen with the results obtained from the model trained on 56
patches. This shows that the model is invariant to scale and



is able to recreate the distribution of larger structures and can
probably be extended to the generation of full-sky CMB maps.
The higher deviation in the diagnostic metrics compared to
the results of 56 patches can be attributed to the fact that we
have used 2D projections of spherical maps and we can observe
a loss of spatial information when we take larger projections.
This can be solved by training the model with spherical CMB
patches instead of 2D images and replacing the convolutional
layers in the model with spherical convolutional layers.

4. Parameter variation

To check the invariance of our model with respect to the
change in the parameters corresponding to the input data that
is used for training the models, we have trained two GAN mod-
els on CAMB data with Hubble constants 65 and 75 respec-
tively. We have then used the trained model to generate 100
random samples for comparison. As seen in Fig 18, the stan-
dard deviation of the pixel intensity distributions of the sam-
ples with H = 65 are consistently higher than the ones obtained
from the samples with H = 75, the average standard deviation
of ( H = 65 ) samples is 15.6312 whereas that of the (H = 75
) samples is 14.2705 giving us a relative difference of 9.16%.

Relative difference :

|Hy — Ha|
[(ngHQ)] x 100
We can also observe a noticeable variation in the correlation
matrix (Fig 19) of samples of both the models. This shows
that the model is sensitive to the change in the cosmological
parameters that define the underlying distribution.
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Figure 18: The plot of the standard deviation of the pixel intensity
distribution of patches generated using GAN model trained on H =
65 data and H = 75 data.

We have also trained our model using 6 different values of
Hubble’s constant. Apart from an anomaly of H=73, as seen
in Table 4 and Fig 20, the standard deviation of pixel intensity
distribution appears to be decreasing with increase in Hubble’s
constant.

100 110 120 130 140 150 160 170 180

-0.25

-0.50

-0.75

-1.00 -1.00

Figure 19: Correlation matrix of power spectrum of GAN samples
obtained from H = 65 model on the left and GAN samples obtained
from H = 75 model on the right

Table 4: Results

Hubble Constant Average% stand.ard .De\.flatl.on in pixel
intensity distribution
65 15.63120985989387
67 15.602640108842536
69 15.226652267061267
71 15.008699629159153
73 15.093389253196806
75 14.27058023246263
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Figure 20: The plot of the average standard deviation of the pixel
intensity distribution of 200 random samples vs the Hubble constant
value corresponding to the training data

As seen in Table 5 and Fig 21, we have also found the
values of average standard deviation in the uncertainty of CMB
Temperature using the scaling factor found from the average
value of the mean of pixel intensity (luminosity) values and the
average value of the mean of CMB temperature uncertainty
values obtained from the temperature maps.

We see a decreasing trend in standard deviation of uncer-
tainty in CMB temperature with increasing Hubble’s constant.
This is expected since a higher Hubble’s constant means a
younger universe which in turn means the universe had lesser
number of structures formed and result in lesser dispersion of
relativistic particles and hence the lesser standard deviation in
uncertainty in CMB temperature.



Table 5: Results

Average standard Deviation in
Hubble Constant uncertainty of CMB Temperature
(mK)
65 0.0544641458533
67 0.0543645996824
69 0.0530545375159
71 0.0522951206591
73 0.0525902064571
75 0.0497232760713
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Figure 21: The plot of the average standard deviation of the uncer-
tainty of CMB Temperature of 200 random samples vs the Hubble
constant value corresponding to the training data

5. Conclusion and future plans

We have successfully presented the ability of Generative ad-
versarial networks to learn the complex distribution behind flat
CMB anisotropy maps. We have trained a deep convolutional
generative adversarial network on a dataset of 56 CMB patches
and 112 CMB patches obtained using CAMB. The patches gen-
erated by the GAN models are very similar to our training
data, that are, the patches obtained by CAMB and healpy.
The power spectrum of the patches generated by GAN and the
patches obtained by CAMB are in very close agreement and a
similar trend can be seen in other diagnostic metrics as well.
‘We have also seen that our model is invariant to scale, that
is, the size of the patch that has been used for training. The
models trained on data with different values of Hubble constant
have generated patches with significantly different properties,
showing that our model is sensitive to change in cosmologi-
cal parameters. We have shown that deep learning can be a
viable alternative to traditional methods of CMB data gener-
ation and computationally much more efficient for cosmologi-
cal experiments that require a large amount of CMB data, we
hope to extend this study to the simulation of full-sky maps
using spherical convolutional layers and generative adversarial
networks in the future. We have trained our deep generative
model using patches of CMB instead of full-sky maps because
we were constrained by limited computational power. We hope
to further improve our model and train using full-sky maps to
present a viable method of CMB data generation for cosmolog-
ical analysis.
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